

Letters

Comments on “Sensitivity Analysis of Lossy Coupled Transmission Lines”

Iwata Sakagami

In Fig. 5 of the above paper,¹ a good agreement between the numerical inversion of Laplace transform (NILT) and HSPICE is presented on the transient response of transmission line system with lumped terminal and interconnecting networks. However, I would like to mention some comments in the following.

It can be said that the waveform shown in Fig. 5 of the above paper reaches the stationary state in the almost flat region of 10–14 nsec. My opinion is that the stationary value must equal to the output value of a resistive network, Fig. 1, which is derived from Fig. 2 of the above paper by having the capacitors open and the inductors short. The V_{out1} and V_{out2} in Fig. 1 correspond to the output voltages across the 1-pF capacitor and the 30Ω resistor located at the right edge of Fig. 2 of the above paper, respectively. Under the 5-V dc source, we have $V_{out1} = 0.0049474$ and $V_{out2} = 0.0026986$. Therefore, the transient response shown in Fig. 5 must approach these values gradually in the flat region. However, the result shown in Fig. 5 is completely different from these values.

Fig. 2(a) shows the calculated transient responses, V_{out1} and V_{out2} , which correspond to the above-mentioned V_{out1} and V_{out2} . The input voltage waveform is shown in Fig. 2(b), where the case of $t_1 = 1$ and $t_2 = 11$ nsec represents the input waveform shown in Fig. 4 of the above paper. The case of $t_1 = 1$ and $t_2 = 60$ nsec was newly calculated in order to confirm the response at the stationary state. The calculation was done by using the fast Laplace transform [1] and the equation of $V_{out}(t) = L^{-1}[E(s)G(s)]$, where L^{-1} is the inverse Laplace transform, $E(s)$ the input function in s -domain and $G(s)$ the voltage transmission coefficient from input port to output port. Here, $G(s)$ can be obtained from Fig. 2 of the above paper directly. In making up Figs. 1 and 2(a), I understand that Fig. 2 of the above paper was obtained using the circuit block shown in Fig. 3 of the above paper as the first stage and cascading four circuits given by the source and a 75Ω resistor connected to the source in Fig. 3 of the above paper being removed.

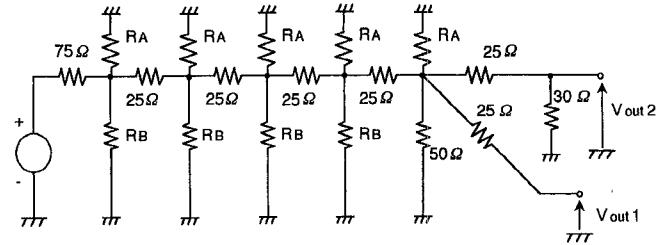
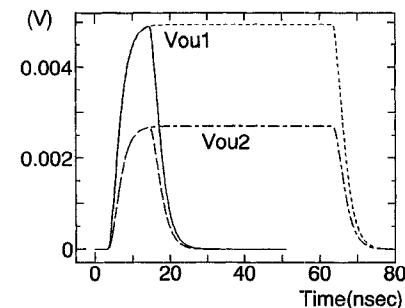
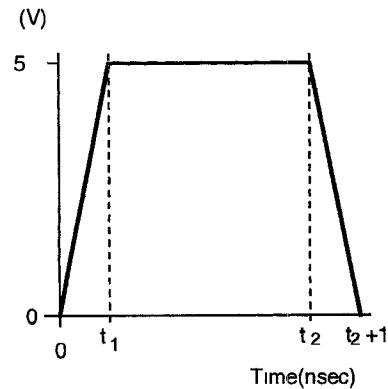




Fig. 1. Resistive network derived from Figs. 2 and 3 of the paper¹ by the dc analysis. $R_A = 475/16$, and $R_B = 550/21$.

Case that $t_1=1$ and $t_2=11$ nsec:
 — (for V_{out1}), - - - (for V_{out2})
 Case that $t_1=1$ and $t_2=60$ nsec:
 - - - (for V_{out1}), - - - (for V_{out2})

(a)

(b)

Fig. 2. (a) Transient responses of the circuit in Fig. 2 of the above paper. V_{out1} and V_{out2} are voltages across the 1-pF capacitor and 30Ω resistor at the right edge of Fig. 2. (b) Voltage waveform used as the source of the circuit in Fig. 2 of the above paper.

Manuscript received January 25, 1996.

The author is with the Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto-Cho, Muroran-shi, Hokkaido, 050, Japan.

Publisher Item Identifier S 0018-9480(96)04730-8.

¹S. Lum, M. S. Nakhla, and Q. J. Zhang, *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 12, pp. 2089–2099, Dec. 1991.

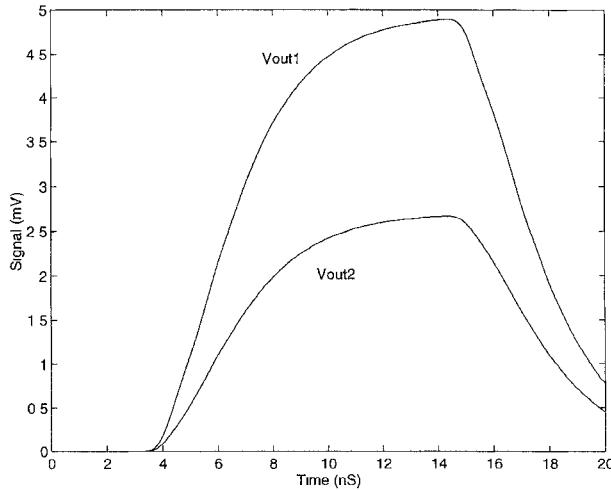


Fig. 3. V_{out1} and V_{out2} without the 75Ω input resistors in the cascaded sections.

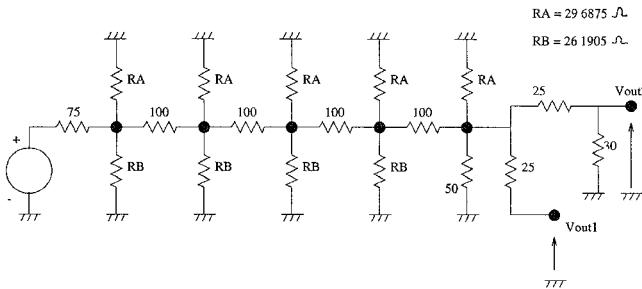


Fig. 4. The dc network including the 75Ω input resistance

Authors' Reply by S. Lum, M. S. Nakhla, and Q. J. Zhang

Obviously, the steady-state response can be obtained by having all the capacitors open and all the inductors short. The reason that the author of the comment got a different answer from the one presented in our paper is that his calculation did not take into account the 75Ω input resistance of the cascaded structure. As mentioned in our paper, the circuit of Example 1 is obtained by cascading four sections to the circuit of Fig. 3 of our paper. Please note also that we used Fig. 2 to symbolically identify the connection points between the cascaded sections, the output ports, and some of the components which were used later in our paper in the sensitivity analysis comparison. Fig. 2 of our paper was not meant to be used to give the details of the individual cascaded sections. These details are given clearly in Fig. 3 of our paper.

For numerical verification, we repeated our analysis with and without the 75Ω resistance in the cascaded sections. The following is a summary of the results:

- Fig. 3 (of this reply) shows the output waveforms obtained without the 75Ω . The peak voltages for V_{out1} and V_{out2} match very well the dc calculations done in our paper.

Manuscript received March 14, 1996.

The authors are with the Department of Electronics, Carlton University, Ottawa K1S 5B6, Canada.

Publisher Item Identifier S 0018-9480(96)04771-0.

- Fig. 4 (of this reply) shows the dc network including the 75Ω . The output voltages calculated using the dc network are $V_{out1} = 0.1159$ mV and $V_{out2} = 0.0632$ mV, which match the peak values of the waveforms reported in our paper.

REFERENCES

- [1] Y. Sekine and A. Ametani, *Distributed-Parameter Circuit Theory*, Corona Publishing, 1990 (in Japanese). (Modified version of a paper, A. Ametani, "The application of the fast Fourier transform to electrical transient phenomena," *Int. J. Elect. Eng. Educ.*, vol. 10, pp. 277-286, 1972).

Comments on "Measurement of the Microwave Conductivity of a Polymeric Material with Potential Applications in Absorbers and Shielding"

Wen-Pin Liao and Fu-Lai Chu

In Fig. 5, Fig. 7, and Fig. 8 of the above paper,¹ Naishadham and Kadaba have demonstrated the utilization of polyacetylene and PBT conductive polymers as single-layer, double-layer electric Salisbury screen and EMI shield. However, some inconsistencies were found between the calculated results and the assumptions stated in the paper.

As indicated in the paper¹, a comparison between the measured results of dc and microwave conductivities indicates that the microwave conductivity at room temperature is within a small percentage of the dc result and can be used for a wide frequency range. Therefore, the conductivity of the polymers given by $\sigma = 2\pi f_0 \epsilon_0 \epsilon''$ is assumed invariant for all frequencies. Based on this assumption, the shielding effectiveness as a function of frequency for 64-mil-thick free-standing films of polyacetylene and PBT is recalculated and is shown in Fig. 1. Apparent discrepancy is found by comparing it with Fig. 8 of the above paper¹. It is interesting to find that the shielding effectiveness based on the invariability of ϵ'' for all frequencies determined from the measured results, $\epsilon^* = \epsilon' - j\epsilon'' = 5.1 - j607$ for polyacetylene at 8.895 GHz and $\epsilon^* = 3.0 - j838$ for PBT at 9.89 GHz, shown in Fig. 1, agrees completely with Fig. 8 of the above paper¹. It is concluded that shielding effectiveness in Fig. 8 of the above paper¹ is under the assumption of frequency invariance of ϵ'' instead of σ .

On the other hand, for the return loss of a single-layer electric Salisbury screen comprising resistive sheets of polyacetylene or PBT, shown in Fig. 5 of the above paper¹, the calculation differences based on the invariability of σ and on the invariability of ϵ'' for all frequencies are insignificant.

For the return loss of a double-layer electric Salisbury screen shown in Fig. 7 of the above paper¹, the recalculation based on the invariability of σ for all frequencies is shown as trace (a) in Fig. 2, which agrees with the comment given by du Toit [1]. The return loss under the assumption of frequency invariant ϵ'' is shown

Manuscript was received March 15, 1996.

The authors are with the Department of Electrical Engineering, Tatung Institute of Technology, Taipei, Taiwan.

Publisher Item Identifier S 0018-9480(96)04772-2.

¹ K. Naishadham and P. K. Kadaba, *IEEE Trans. Microwave Theory Tech.*, vol. 39, pp. 1158-1164, July 1991.